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Fuel-Optimal Propulsive Reboost of Flexible Spacecraft

Larry Silverberg* and Jim Redmondt
North Carolina State University, Raleigh, North Carolina 27695

This paper presents for the first time an exact solution to the fuel-optimal propulsive reboost problem for
flexible spacecraft. The spacecraft undergoes rigid-body motion and flexible-body motion, and reboost is
achieved propulsively through the use of reaction control jets. The exact fuel-optimal solution to the associated
minimization problem is found numerically based on an adaptive grid bisection search. The reboost of the
floating harmonic oscillator reveals properties of the fuel-optimal solution. Nondimensional plots of minimum
fuel vs maneuver time expose the nature of the solution classes depending on the maneuver time. Some very
interesting properties are observed, among them the shifting of impulses to the smaller oscillator mass.
Comparisons are made with near fuel-optimal solutions obtained by other investigators.

I. Introduction

T HE prospect of placing large structures in space has stim-
ulated interest in the problem of fuel-optimal control of

flexible spacecraft. Of particular interest is fuel-optimal pro-
pulsive reboost of structures possessing significant structural
flexibility.

In the early 1960s, in an extension of Krasovskii's geometric
approach to optimal control theory,1 Neustadt showed that
fuel-optimal control of dynamic systems requires impulsive
forces.2 However, Neustadt was primarily concerned with
broad classes of optimal control problems, particularly with
those solved by gradient-based minimization procedures.
Since fuel-optimal control does not fall under this category,
Neustadt abandoned fuel-optimal control in favor of other
minimization problems. Later on, Hajek re-examined fuel-op-
timal control but with the added constraint of bounded con-
trol inputs. Unlike the bang-bang form of time-optimal con-
trol,3 he showed that bounded fuel-optimal control is bang-
off-bang.4

Although fuel-optimal control was demonstrated success-
fully on a variety of low-order systems,5'10 numerical diffi-
culties plagued the solutions to fuel-optimal control of higher
order systems (such as the reboost problem treated here). To
circumvent these difficulties, various approaches have been
adopted. One approach is to simply discard the fuel-optimal
control formulation in favor of other more easily formulated
techniques such as linear optimal control.11 Other approaches
render near fuel-optimal solutions by eliciting various proper-
ties associated with the fuel-optimal solution. For example,
based on the premise that induced vibrations increase fuel
consumption, reboost strategies that minimize flexural motion
have been developed.12 Also, the independent modal space
control method13 was employed to yield independent second-
order modal fuel minimization problems. These problems
were solved with relative ease, and the resulting optimal modal
controls were then transformed to yield near optimal quan-
tized actuator forces.14 In other investigations, characteristics
associated with the fuel-optimal solution of second-order sys-
tems were extended to more complicated systems. These inves-
tigations led to a feedback algorithm in which fuel-optimal
pulses of reaction control jets act on the system at instances of
peak local velocities.15'18 This approach has been shown to be
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effective but once again is not based on an exact minimization.
Indeed, the previously cited near fuel-optimal control solu-
tions were developed because exact solutions were unavail-
able.

This paper provides the numerical foundation for the exact
solution to the fuel-optimal control problem. The paper then
focuses on the fuel-optimal propulsive reboost of flexible
spacecraft. In particular, the fuel-optimal reboost of the float-
ing harmonic oscillator problem is solved exactly. The solu-
tion exhibits some interesting properties. Among these proper-
ties, this paper reveals that the perceived properties on which
the previously cited near fuel-optimal solutions were based are
all violated to various degrees. Also, some new properties are
exposed.

The fuel-optimal control problem is reviewed in Sec. II.
Next, in Sec. Ill, an adaptive grid bisection search scheme is
introduced for the minimization. The reboost problem is ad-
dressed in Sec. IV by introducing the floating harmonic oscil-
lator as a tutorial spacecraft. The floating harmonic oscillator
possesses one flexible-body mode and one rigid-body mode. A
variety of examples is given. These include simple vibration
suppression, rigid-body reboost, and general reboost. Finally,
concluding remarks are given in Sec. V.

II. Fuel Optimal Control
Consider the linear time-invariant system

m
x(t) = Ax(t) + £ bjUj(t) (1)

7 = 1

in which x(t) is the n x 1 state vector. A is the n x n system
matrix, bj is the jth n x 1 control participation vector, and
Uj(t) is they'th control input. The solution to Eq. (1) is

x ( t ) = eA e -AsbjUj(s) ds (2)

where JCG = Jt(0) is the initial state. The objective of the control
is to transfer the system from the initial state JCQ to a final state
jci = x(Tf) in maneuver time 7/. From Eq. (2), the reachable
state is then defined as

y = £ \ e ~AtbjUj(t) dt=e ~ATfXl - x0 (3)
y = l J O

The fuel function associated with propulsive actuation is

m P7]r

Fuel= £ \Uj(t)\ dt (4)
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The fuel-optimal control transfers JCG to jti in maneuver time 7/
while minimizing the fuel.

The development of the fuel-optimal control solution is
deeply rooted in set theory and beyond the scope of this paper.
Thus, the details of this development have been omitted,
leaving only the necessary results. (For those readers interested
in the development, Refs. 2 and 10 provide a lucid introduc-
tion.) The control index functions are defined as

Here rj is an n x 1 vector contained in the hyperplane

H=[rr. r,Ty = l]

(5)

(6)

where y is given in Eq. (3). The vector rj is called the normal
vector. Optimal control problems in general reduce to select-
ing a particular normal vector iy from the hyperplane H that
yields favorable characteristics associated with the control
index functions gj(rj, t). In the case of fuel-optimal control,
we define the index extremum

a* = min max sup \gj(q, t)\
\<j<m Q<t<Tf

(7)

The solution of Eq. (7) uniquely yields the optimal normal
vector 17*. The fuel-optimal controls are of the form

«*(0 = - j = l , 2 , . . . , / n (8)

in which gj is an Nj x 1 vector of impulses and c/ is an Nj x 1
vector of impulse coefficients, given by

Tlj)]5(t - T^

Cj = [CijC2j'-CNjj]J

*,TN.j)]&(t-tNjj)}T

(9a)

(9b)

The^th fuel-optimal control input «, (t) represents a series in
time of NJ impulses. Here Nj(j = 1, 2, . . . , m) corresponds to
the multiple solutions to Eq. (7) a* = Ig/Oy*, T#)| (/ = 1, 2,
..., TV/; 7 = 1, 2 , . . . , m). Note that TV} may be equal to zero
for some7 if g/(i/*, t) does not assume the value of a* at any
time during the maneuver. In this case, u* (t) - 0. The impulse
coefficients c// given in Eq. (9b) are nonnegative constants that
satisfy

(10)

where

c = [Cj c2 • • • CM]T (1 la)

1 = [1 1 - - - 1 ] 7 * (lib)

The impulse coefficients are chosen so that the resulting con-
trol accomplishes the stated objective, that is, such that the
system is transferred from Jt0 to xl in time Tf. In some cases,
multiple solutions exist. Substituting Eq. (8) into Eq. (4), the
minimal amount of fuel is

Fuel* = —or (12)

III. Numerical Solution by Adaptive Grid Bisection
The solution to Eq. (7) represents the primary difficulty

associated with fuel-optimal control problems. Because in
most cases a* cannot be determined explicitly, the solution
must be found numerically. Gradient methods are not applica-
ble due to the nonlinearities and discontinuities present in Eq.
(7). Fortunately, a relatively simple adaptive grid bisection

Fig. 1 Square grid generated in step 1 in which n = 3 and L = 2.

sup

ti=0

Fig. 2 Sample function for step 2 supremum computation.

search can be employed to obtain the index extremum a*, the
optimal normal vector 17*, the number of impulses Nj(j =
1, 2, . . . , m), the impulse times r/7 (/ = 1, 2, . . . , TV/; j = 1, 2,
. . . , m ), and the impulse coefficients c/, ( / = 1 , 2, . . . , Nj ;
7 = 1,2, . . . , m).

The solution to Eq. (7) is found in the following seven steps:
1) Generate a square grid G of normal vectors iy l5 172, • • - ftp

that form a subset of the hyperplane H.
2) Determine

au= sup \gjtni, t)\
0 - * - Tf

for each iy/(/ = 1, 2, ... ,p) and for each (j = 1, 2, ... , m).
The suprema a// are computed to within the error margin ei.

3) Determine the grid-optimal normal vector 17* for which

a. = mn max
\<j<m

4) Select an updated grid G of normal vectors i^, 172, • • • » "*\P
centered about the grid-optimal normal vector ij* based on the
following: a) If 17* is an interior grid point, decrease the grid
spacing by 50% (bisection); and b) If 17* is a boundary grid
point, increase the spacing by 50%.

5) Repeat steps 2-4 until the grid spacing is within the error
margin e2. The converged grid-optimal normal vector repre-
sents the optimal normal vector 17*.

6) Determine the number of impulses Nj associated with
Uj (t) (J ' = 1> 2, ... , m), the corresponding impulse times T//
(/ = 1, 2, . . . , Njm,j = 1,2, . . . , m), and the sign functions sgn
[gj(1*,TU)](i = l92,...9Nj;j = l,2,...9m).

7) Compute the impulse coefficients c//(/ = 1, 2, ... ,7V/;
7 = 1,2,. . . , w).

In step 1 , the hyperplane H is discretized into a square grid
G. Recall that the hyperplane H is subject to the constraint
yTy = 1 , so one of the n components of rj is dependent, leaving
n - I independent components. Without loss of generality, let
the first n - I components be independent. The components
r / /( / = 1, 2, . . . , n - 1) of rj are now divided into 2L + 1 com-
ponents of points T^ = rff + rh (r = 0, ± 1, ±2, . . . , ±L)
centered at 17 f with grid spacing h. The n - 1 dimensional
square grid now contains p = (2L + I)""1 grid points (see
Fig. 1).

In step 2, the suprema

au= sup \gjtm, t)\
0 < t < Tf

(i = l , 2 , . . . , / ? ;7 = l , 2 , . . . , / n )
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are computed. Toward that end, candidate suprema (which
include the suprema) are first computed. For each / andy, the
candidate suprema include the two boundary points (in time)
Igjfa, 0) I and \gj(rij, Tf)\ as well as local maxima. Note that
\gj(rii, t) I is normally continuous in time and infinitely differ-
entiable except when \gj\ = 0 at which point d\gj\/dt changes
its sign (see Fig. 2). As a consequence of these properties, the
local maxima can be efficiently computed by means of bisec-
tions to approach the neighborhood of the local maxima fol-
lowed by a Newton's method to converge to the local maxima
to within the error margin e^ Note that these steps yield candi-
date suprema aj-f (k = 1, 2, . . . ,TV/ / ) . Finally, the suprema
themselves are obtained from

7
& 6

§ 4

I3

i§ 2
1
" 0 1 2 3 4 5 6 7 8

Maneuver Time (sees)

Fig. 5 Rigid-body reboost class: minimum fuel vs maneuver time.

In step 3,

= max
i < k < Ny

a = mm max
! < / < / ? 1 <j < m

is computed. This computation is trivial, not warranting ex-
planation. The normal vector corresponding to a is referred to
as the grid-optimal normal vector denoted by i/* where i is the
grid index corresponding to a..

In step 4, the grid G is updated. The update is dependent on
y*. If rj* is an interior grid point, then the likelihood increases
that the optimal normal vector if* is contained within the
boundaries of the existing grid in the neighborhood of the
grid-optimal normal vector 17*. Thus a new grid is generated
centered about 17* with the grid spacing decreased by 50% (see
Fig. 3). However, if i/* is a boundary grid point, then the
likelihood increases that rj* is not contained within the existing
grid, in which case a new grid is generated centered about 17*
with the grid spacing increased by 50% (see Fig. 4).

In step 5, steps 2-4 are repeated until the grid spacing is
within the error margin e2- The converged grid-optimal normal
vector is then taken as the optimal normal vector for the
fuel-optimal control problem. The question arises here how to
check whether the numerically converged grid-optimal normal
vector is in fact the optimal normal vector. The answer to this
question is provided by Eq. (12). Since the convergence to a*
is from above and fuel is inversely proportional to a*, it
follows that the fuel consumption converges from below. In
the event that the converged a* is not associated with the
optimal normal vector, the associated converged fuel would be
lower than the optimal fuel. In subsequent steps, this would
lead to control inputs that cannot possibly transfer the system

^
1 I

±
hnew=0.5h
T
S

Fig. 3 Grid-optimal normal vector in the interior leads to the grid
spacing decreased by 50% in step 4.

Fig. 4 Grid-optimal normal vector on the boundary leads to grid
spacing increased by 50% in step 4.
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Fig. 6 Vibration suppression class: minimum fuel vs maneuver time.

from JCQ to JCi in time Tf. On the other hand, if in subsequent
steps the control inputs can transfer the system from XQ to Jti
in time 7}, then the converged a is indeed a* and is associated
with the optimal normal vector.

In step 6, the optimal control inputs corresponding to if* are
computed. During the last iteration in step 5, the number of
impulses Nj (j = 1, 2 , . . . , m) associated with each u] (t), the
impulse times r//( / = 1,2, . . . , N j \ j = 1,2, . . . , m), and the
sign functions sgn[g;(iy*, T/7)](/ = 1,2, ...,NfJ = 1,2,.., AW)
are recorded.

In step 7, the impulse coefficients c / , ( /= 1, 2,... ,N/;
j = 1, 2 , . . . , m) are computed from a simultaneous set of
linear algebraic equations. Substituting Eq. (8) into Eq. (3)
and augmenting the result with Eq. (10), we obtain

c >0 (13)

in which

P =
l ~ l (Tf .

—— (« "")»!,«* Jo
TAt...±\Tf

 e-A,b ->

\T

(14a)

y

i
(14b)

Note that augmenting the reachable state equations with the
condition of Eq. (10) as earlier is redundant if the true optimal
normal vector has been determined. In this case, the con-
verged index extremum a* yields the optimal fuel via Eq. (12)
only if Eq. (10) is satisfied. Nevertheless, Eq. (10) is included
in the system because it gives an indication of the exactness of
the optimal normal vector and the index extremum.

In general, rank (P) is less than or equal to n and the
solution space is determined by row reduction. In instances
when Tf is sufficiently small and the number of impulses is
less than or equal to n, the system is uniquely determined. In
other cases when 7} is sufficiently large, the number of im-
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Fig. 7 Vibration suppression class, m2 = 2mi case, Tf = 0.5 s: dis-
placement and velocity of each mass vs time.

1

0.5

0

-0.5

.1

/- |

/ ,

V !
y^^ i
^f^

I ! I

0.525 1.05 1.575
Time (sees)

2.1

Fig. 8 Vibration suppression class, rm = 2m\ case, Tf = 2.0 s: dis-
placement and velocity of each mass vs time.
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Fig. 9 Vibration suppression class, mi - 2m\ case, Tf = 4.0 s: dis-
placement and velocity of each mass vs time.

pulse coefficients can be greater than n. In this case the system
is underdetermined and multiple solutions exist. Also, note
again that the nonexistence of an exact solution to Eq. (13)
indicates that convergence to the optimal solution was not
achieved in step 5.

IV. Floating Harmonic Oscillator
Of particular interest is the problem of fuel-optimal propul-

sive reboost of flexible spacecraft. The significant properties
of the solution to this problem are revealed when we select the
floating harmonic oscillator as an illustrative flexible space-
craft. This system consists of two masses, m\ and m2, under-
going displacements y\(t) and y2(t), respectively. The masses
are linked by a linear spring of constant k and equipped with
reaction control jets that produce control forces u\(t) and
u2(t). The equations of motion are

m2y2(t} + k[y2(t) - = u2(t)

(15a)

(15b)

Equation (15) is transformed into state-space form by defining
the states

(16a)

(16b)

(16c)

(16d)

m\ + m2

x2(t)=y2(t)-

X3(t)=X1(t)

-i,. / /\ _ I* (t\X^(l) = X2\L)

where *i(0 represents the rigid-body displacement of the mass
center and x2(t) represents the flexible-body displacement of
the spring. The system is now recast in the form of Eq. (1),
where

A =

0 0
0 0
0 0

1 0
0 1
0 0

0 -co2 0 0

0
0
1

(17a)

Fig. 10 General reboost class: minimum fuel vs maneuver time.
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Fig. 11 General reboost class, mi = 2m\ case, Tf = 0.8 s: displace-
ment and velocity of each mass vs time.

in which

m\ + m2
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m2

m2)

(17c)

mlm2
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Table 1 Control parameters:
vibration suppression class, mi = 2m\ case

u\(t) impulses «2(0 impulses
7>,s
0.5

2.0

4.0

a*

0.621929

1.080844

1.414214

riy, s sgnfei)
0.000000 +
0.500000
0.817892
2.000000 +
0.740480
2.221441 +
3.702402

cij
0.164045
0.335955
0.498827
0.067895
0.250000
0.500000
0.250000

T27', S

0.000000
0.500000
0.623410
——
——
——
——

sgn(£2) c2j
0.164045

+ 0.335955
+ 0.436626
—— ——
—— ——
—— ——
—— ——
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Fig. 12 General reboost class, m2 = 1m\ case, Tf = 2.0 s: displace-
ment and velocity of each mass vs time.
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Fig. 13 General reboost class, mi = 2m\ case, Tf = 5.3 s: displace-
ment and velocity of each mass vs time.

denotes the natural frequency of the oscillation. The associ-
ated matrix exponential is

e"1 =

0

cos

0

0
sin

1
0 — oj sin o)t 0

0
cos

(18)

Substituting Eqs. (17) and (18) into Eq. (5), we obtain

-1 sin ut 1 cos ut
g\ = + m2 + m2

09a)

£2 =
sn

m2 m2

cos ut
——— *m2

(19b)

Next we examine the fuel-optimal solution associated with
three classes of problems dependent on the sets of initial and
final states. The three classes of problems are rigid-body re-
boost, vibration suppression, and general reboost. In all three
classes of problems JCQ = [*io *2o 0 0]r, jti = 0, and we let
k = m\ + m2 = 1. The reachable state is given from Eq. (3) as

= [-xlo -*20 0 0]r (20)

Substituting Eq. (20) into Eq. (6) yields the hyperplane con-
straint

1 (21)

Rigid-Body Reboost Class
In the class of rigid-body reboost problems, each mass is

displaced by one unit so yi0 = y20 = 1, leaving the spring unde-
formed. From Eq. (16), x10 = 1 and x2Q = 0. The exact solution
to this fuel-optimal control problem is obtained in closed
form. The optimal normal vector and the optimal control are
given by

17* = [-1 0 -Tf/2 0]r (22)

u*(t) = — [_5(j) + 5(f - Tf)]9 (j = 1,2) (23)

As indicated by Eq. (23), the optimal control consists of an
impulse on each mass at the initial and final times. The magni-
tudes of the impulses are proportional to mass. Because the
inputs are proportional to mass, no vibration will be induced
during the reboost. The minimum fuel is shown as a function
of maneuver time in Fig. 5.

Vibration Suppression Class
In the class of vibration suppression problems, the two

masses are displaced by the amounts ylo= -rn2/(ml + m2)
and y2Q = m\/(m\ + m2), leaving the system's mass center
undisplaced. From Eq. (16), *10 = 0 and x20= 1. The exact
solution to this fuel-optimal control problem is obtained nu-
merically. Consider the following three cases: 1) m2 = mi
(cj = V4£), 2) m2 = 2mi(u = V4.5&), and 3) m2 = 5mi(u =
V7.2&). The minimum fuel as a function of maneuver time is
shown in Fig. 6 for all three cases. A single plateau is observed
in the first case, and multiple plateaus are observed in the
other two cases. The final plateau in each case extends to
infinity. For the plateaus that extend to infinity, the pulse
times do not change, but additional pulse times arise as the
maneuver time is increased. The magnitudes of the associated
pulses are not unique. With respect to each finite time plateau,
the solution is the same over the associated range of maneuver
times. Also note that as the maneuver time decreases below
50% of the natural period Tp = 2ir/u, the minimum fuel
required increases substantially in comparison with the mini-
mum fuel for larger maneuver times.

The number and magnitude of the impulses associated with
u* (t)(j = 1, 2) depend on the maneuver time as illustrated in
Table 1. Table 1 shows three solutions corresponding to m2
= 2mi (Tp « 2.96) and control times of 0.5, 2.0, and 4.0 s. As
indicated for small maneuver times, impulses are applied on
each mass at the initial and final times. For median maneuver
times, fewer impulses are needed, and they are applied at
intermediate times. As shown for 7} = 2 s, three impulses are
applied each at different instances. Note that Eq. (10) is not
exactly satisfied for this case. The sum of the impulse magni-
tudes is approximately 1.003. Thus, about 0.3^o more fuel
than the converged value is required to complete the maneu-
ver. This numerical error is caused by the inexact determina-
tion of the index extremum a* using adaptive grid bisection.
In general, the degree to which Eq. (10) is satisfied signifies the
degree of optimality of the control scheme. For larger maneu-
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Table 2 Convergence example:
vibration suppression class, mi = 1m\

Iteration 171 173 774
1
2
3
4
5
10
20
35
45

0.000000000
0.500000000
0.500000000
0.500000000
0.500000000
0.410156250
0.408424377
0.408419866
0.408419879

0.000000000
0.500000000
0.750000000
0.750000000
0.687500000
0.656250000
0.655029297
0.655029163
0.655029163

0.000000000
0.000000000
0.000000000
0.000000000
0.062500000

-0.013671875
-0.013526916
-0.013533452
-0.013533430

case Tf = 2.0 s

Min max sup
Step size lg/fo» 0'

1.0000000000
0.5000000000
0.2500000000
0.1250000000
0.0625000000
0.0019531250
0.0000171661
0.0000000141
0.0000000001

.4142135623731

.3041415131743

.1265267495443

.1265267495443

.1009325628443

.0811093227742

.0808406732402

.0808403397486

.0808403395831

Table 3 Control parameters:
general reboost class, mi = 2m\ case

u\(t} impulses w2(0 impulses

Tf,*
0.8

2.0

5.3

a*
0.387717

0.849176

1.414214

r\j9 s sgnfei)
0.000000
0.110495
0.891020
2.000000 +
0.740480
2.221441 +
3.702402
5.183363 +

CU
0.077500
0.112258
0.164744
0.497984
0.377465
0.150000
0.122535
0.350000

T2j, S

0.000000
0.800000
0.000000
——
——
——
——
—

sgn(g2) c2j
0.310394

+ 0.500151
0.337958

—— ——
—— ——
—— ——
—— ——
—— ——

ver times the impulses tend to be applied only on the smaller
mass. As shown for 7} = 4 s, three impulses are applied at
intermediate times. An investigation of the solution for vari-
ous maneuver times reveals that for large maneuver times the
optimal control forces are applied only on the smaller mass
when its velocity is at a peak. The time responses associated
with the three solutions are shown in Figs. 7-9. Also, the
grid-optimal normal vectors associated with the numerical
optimization for 7} = 2.0 s are given in Table 2.

General Reboost Class
In this class of problems, both rigid-body and flexible-body

initial displacements are present. Let X\Q = 1 and x2o = 1 and
consider the following three cases: 1) m2 = m\9 2) m2 =
2m\9 and 3) m2 = 5m\. The minimum fuel as a function of
maneuver time is shown in Fig. 10 for all three cases. Note
that, as the maneuver time decreases, the minimum fuel asso-
ciated with general reboost becomes the minimum fuel associ-
ated with rigid-body reboost as shown in Fig. 5. Furthermore,
as the maneuver time increases, the minimum fuel associated
with general reboost becomes the minimum fuel associated
with vibration suppression as shown in Fig. 6. Also, note the
existence of plateaus in each case. Once again, these plateaus
represent either identical or multiple solutions as interpreted in
the previous class of problems. As shown, when the maneuver
time decreases below the natural period Tp> the minimum fuel
required increases substantially. The number and magnitude
of the impulses associated with u* (t)(j = 1,2) depend on the
maneuver time as illustrated in Table 3 for m2 = 2m\. Table 3
shows three solutions depending on the maneuver time. As
indicated, the impulses shift to the first mass as the maneuver
time increases. Figures 11-13 show the time responses for the
three cases.

V. Conclusions
This paper presented a numerical technique for exactly solv-

ing the fuel-optimal control problem of high-order systems.
Furthermore, the exact solution to the fuel optimal reboost of
the floating harmonic oscillator was carried out and subse-
quent properties were revealed.

Many of these properties were previously observed in the
near fuel-optimal solutions formulated by other investigators
whereas others were not. The guiding principles of the inde-
pendent control of modes and the prevention of induced vi-
bration were both observed in the rigid-body reboost case. The
guiding principle of impulse damping at peak velocities was
observed in all of the pertinent cases for large maneuver times.
However, these guiding principles of the near fuel-optimal
solutions conflict with the exact solution in other cases. In the
case of vibration suppression, the fuel-optimal solutions uti-
lized the rigid-body motion that violates the principle of the
independent control of modes. Additional properties revealed
by the exact solution include the tendency for the actuation to
be concentrated at the smaller mass, the existence of multiple
solutions in the case of vibration suppression for large maneu-
ver times, and the repetition of solutions over ranges of ma-
neuver times.
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